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Abstract. Weight initialization is critical in being able to successfully
train artificial neural networks (ANNs), and even more so for recurrent
neural networks (RNNs) which can easily suffer from vanishing and ex-
ploding gradients. In neuroevolution, where evolutionary algorithms are
applied to neural architecture search, weights typically need to be initial-
ized at three different times: when the initial genomes (ANN architec-
tures) are created, when offspring genomes are generated by crossover,
and when new nodes or edges are created during mutation. This work
explores the difference between the state-of-the-art Xavier and Kaim-
ing methods, and novel Lamarckian weight inheritance for weight ini-
tialization during crossover and mutation operations. These are exam-
ined using the Evolutionary eXploration of Augmenting Memory Mod-
els (EXAMM) neuroevolution algorithm, which is capable of evolving
RNNs with a variety of modern memory cells (e.g., LSTM, GRU, MGU,
UGRNN and Delta-RNN cells) as well as recurrent connections with
varying time skips through a high performance island based distributed
evolutionary algorithm. Results show that with statistical significance,
the Lamarckian strategy outperforms both Kaiming and Xavier weight
initialization, can speed neuroevolution by requiring less backpropaga-
tion epochs to be evaluated per genome, and that the neuroevolutionary
process provides further benefits to neural network weight optimization.

Keywords: Neuroevolution · Neural Architecture Search · Weight In-
heritance · Weight Initialization · Lamarckian Evolution

1 Introduction

Neuroevolution (NE), or the use of evolutionary algorithms (EAs) for neural
architecture search (NAS) and training, has seen a significant growth in pop-
ularity due to the challenges of designing deep neural networks [27, 17]. While

? This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Combustion Systems under Award Number
#FE0031547 and by the Federal Aviation Administration and MITRE Corporation
under the National General Aviation Flight Information Database (NGAFID) award.
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some approaches to NE, such as indirect encoding, e.g., HyperNEAT [28], where
the genomes are used to generate the architecture and assign weights; or fit-
ness estimation, e.g., [3, 2] where genome fitness is estimated without training
the networks, most modern NE algorithms involve a direct encoding approach,
where a neural network’s architecture and weights are directly represented as
genomes that can be evolved by crossover and mutation operations.

In direct encoding, the initialization of network weights is critical, especially
for deep neural networks (DNNs) [21], as it has been shown that poor weight
initialization quickly leads to gradient vanishing and exploding problems [11].
The Xavier [11] and Kaiming weight initialization [12] methods have been a
great success in reducing issues for DNNs and are now the de facto standard
for training DNNs, however, these methods do not take into account extra in-
formation available during NE. For example, during mutation, a child genome
is generated by randomly modifying a previously trained parent genome, and
during crossover, a child genome is generated utilizing two (or more) previously
trained parental genomes. These parental distributions and weight values and
distributions contain valuable information that can be used to better initialize
child genome weights, and this process is known as Lamarckian [24, 23, 6] or
sometimes Epigenetic [7] weight initialization.

Unfortunately, many NE algorithms still use an outdated uniform random
initialization for initial populations [26, 29, 9, 19], with a few exceptions that use
Xavier [1, 23] or Kaiming [7] initialization. Among recent state-of-the-art NAS
works, few used the Kaiming or Xavier methods, such as ENAS [22] which uses
Kaiming, but others such as NSGA-NET [18] and Progressive NAS [16], still use
uniform random weight initialization.

In Evolutionary Algorithms (EAs), using Lamarckian weight inheritance means
that offspring inherit weights from their parents through mutation or crossover.
Some studies suggest that Lamarckian weight inheritance can reduce the num-
ber of backpropagation (BP) epochs to train neural networks [7, 15] and lead
to better performing neural networks, but to the best of authors’ knowledge,
Lamarckian weight inheritance has not been rigorously compared to the modern
Xavier and Kaiming weight initialization methods.

The main contribution of this work is to provide an experimental analysis
of Lamarckian weight inheritance methods (one for crossover and another for
mutation) to Xavier and Kaiming initialization. This study was done in the
context of evolving deep recurrent neural networks (RNNs) for time series data
prediction using three challenging real world data sets. Results are promising,
showing that with statistical significance the Lamarckian strategies outperform
Xavier and Kaiming weight initialization, and further can reduce the amount of
BP epochs used to train the neural networks, allowing more time to be spent on
architectural evolution. Additionally, the neuroevolutionary process is shown to
provide additional benefits to the selection of weights, as it is shown that when
the best found architectures are retrained, even for a large number of epochs,
in most cases, they do not surpass the performance of the networks with the
evolved weights.
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2 Weight Initialization and Inheritance

2.1 Xavier and Kaiming Weight Initialization

Xavier weight initialization [11] was designed for DNNs with symmetrical ac-
tivation functions such as tanh and softsign. The weights in each layer are
generated using a uniform distribution:

W ∼ U [−
√

6√
fin + fout

,

√
6√

fin + fout
] (1)

where fin and fout are fan in and fan out of the layer1.
Kaiming weight initialization [12] was designed for non-symmetrical activa-

tion functions such as ReLUs. The weights in each layer are generated with a
normal distribution, and the fan in, fin:

W ∼ N(0, 1) ∗
√

2

fin
(2)

2.2 Lamarckian Weight Inheritance

The Lamarckian strategies investigated in this work were first introduced by
Desell et al. for NE of convolutional neural networks (CNNs) and later used
for recurrent neural networks [7, 19]. While Prellberg and Kramer also inves-
tigated Lamarckian weight inheritance for CNNs, their strategy was a simpler
version where Lamarckian inheritance was only done on crossover, and mutated
components were re-initialized randomly [23].

For direct encoding NE algorithms, after the initial genomes’ weights are
initialized, new genomes are created either via crossover, where two or more
parents are recombined into a child genome, or by mutation where a single
parent has one or more random modifications made.

For crossover, given a more fit and less fit parent, child genome weights are
initialized as follows. When the same architectural component (e.g., node, edge
or layer) exists in both parents2, the weights and biases for that component are
generated using a stochastic line search recombining weights or biases from those
in the parents’ components. Given a random number r ∼ U [−0.5, 1.5], a child’s
weight wc is set to:

wc = r(wp2 − wp1) + wp1 (3)

where wp1 is the weight from the more fit parent, and wp2 is the weight from the
less fit parent (note the same r value is used for all child weights). This allows

1 Fan in is the number of input signals that feed into the layer, fan out is the number
of output signals that come out of the layer

2 Components are identified as being the same by having the same innovation num-
ber, which is uniquely created by the neuroevolution process when an architectural
component is added to a genome, and are inherited by children on crossover and
mutation, as in the NEAT algorithm [26].
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the child weights to be set along a gradient calculated from the weights of the
two parents, performing an informed exploration of the weight space between
and around the two parents. In the case where the component only exists in one
parent, the same weights and biases are copied to the child.

For mutations, new components are added to the parent neural network
architecture, so it is not possible to directly utilize weights from the parent.
Instead, statistical information about the weight distributions of the parents can
be used. Weights and biases for new components generated during mutations are
instead initialized using a normal distribution around the mean µp and variance
σ2
p of the parent’s weights:

W ∼ N(µp, σ
2
p) (4)

while the other weights are directly copied from the parent. This network-aware
approach using the statistical distribution of a network’s weights has also been
shown to speed transfer learning, lending further credence to this approach [10].

3 Methodology

This work utilizes the Evolutionary eXploration of Augmenting Memory Models
(EXAMM) neuroevolution algorithm [19] to explore the different weight initial-
ization and inheritance strategies. EXAMM evolves progressively larger RNNs
through a series of mutation and crossover (reproduction) operations. When
nodes are added their type is selected uniformly at random from a suite of sim-
ple neurons and complex memory cells: ∆-RNN units [20], gated recurrent units
(GRUs) [4], long short-term memory cells (LSTMs) [13], minimal gated units
(MGUs) [30], and update gate RNN cells (UGRNNs) [5]. This allows EXAMM
to select the best performing recurrent memory units. EXAMM also allows deep
recurrent connections, which enable the RNN to directly use information be-
yond the previous time step. These deep recurrent connections have proven to
offer significant improvements in model generalization, even yielding models that
outperform state-of-the-art gated architectures [8]. EXAMM has both a multi-
threaded implementation and an MPI implementation for distributed use on
high performance computing resources. To the authors’ knowledge, these capa-
bilities are not available in other neuroevolution frameworks capable of evolving
RNNs, which is the primary reason EXAMM was selected for this work.

EXAMM uses an asynchronous island based evolution strategy with a fixed
number of islands n, each with an island capacity m. During the evolution pro-
cess, islands go through two phases: initialization, and filled. During the initial-
ization phase, each island starts with one seed genome, which is the minimal
possible feed-forward neural network structure with no hidden layers, with the
input layer fully connected to the output layer. Worker processes repeatedly
request genomes to evaluate from the master process using a work-stealing ap-
proach.

On receiving a genome the worker then evaluates its fitness, calculated as
mean squared error (MSE) on a validation data set after stochastic back prop-
agation training. When reported back to the master process, if the island is
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not full, it is inserted into the island; otherwise, if the fitness is better than
the worst genome on that island, it will replace the worst genome. The master
generates new genomes from islands in a round-robin manner, by doing a ran-
dom mutation on randomly selected genomes from an island until that island
reaches maximum capacity m, and its status becomes filled. When all islands
are filled, they repopulate through inter-island crossover, intra-island crossover
and mutation operations. Intra-island crossover selects two random genomes
from the same island, and the child gets inserted back to where its parents come
from. Inter-island crossover selects the first parent at random from the island
the child will be inserted into, and the second parent is the best genome from
another randomly selected island. As islands are distinct sub-populations and
otherwise evolve independently, the only chance for the islands to exchange genes
is through inter-island crossover.

4 Results

Data Sets: This work utilized three real-world data sets for predicting time series
data with RNNs3. The first comes from data collected from 12 burners of a coal-
fired power plant, the second is the wind turbine engine data from 2013 to 2020,
collected and made available by ENGIE’s La Haute Borne open data windfarm4,
and the third comes from a selection of 10 flights worth of data from the National
General Aviation Flight Information Database (NGAFID). All of the datasets
are multivariate (with 12, 88, and 31 parameters, respectively), non-seasonal,
and the parameter recordings are not independent. Furthermore, they are very
long. The power plant data consists of 10-days worth of per-minute data, the
wind turbine data consists of readings every 10 minutes from 2013 to 2020, and
the aviation time series range from 1 to 3 hours worth of per-second data. Main
flame intensity was chosen as the output parameter for the coal dataset and
average active power was selected as output parameter for the wind turbine
data set. The aviation dataset was used to predict 4 engine output parameters,
E1 CHT1, E1 CHT2, E1 CHT3, E1 CHT4.

Results were gathered using Rochester Institute of Technology’s research
computing systems. This system consists of 2304 Intel® Xeon® Gold 6150
CPU 2.70GHz cores and 24 TB RAM, with compute nodes running the RedHat
Enterprise Linux 7 system. Each experiment utilized 72 cores.

Each EXAMM run used 10 islands, each with a maximum capacity of 10
genomes. New RNNs were generated via mutation at a rate of 70%, intra-island
crossover at a rate of 20%, and inter-island crossover at a rate of 10%. 10 out
of EXAMM’s 11 mutation operations were utilized (all except for split edge),
and each was chosen with a uniform 10% chance. EXAMM generated new nodes
by selecting from simple neurons, ∆-RNN, GRU, LSTM, MGU, and UGRNN

3 These data sets are made publicly available at EXAMM GitHub repository:
https://github.com/travisdesell/exact/tree/master/datasets/

4 https://opendata-renewables.engie.com
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Fig. 1: Convergence rates (in terms of best MSE on validation data) with Xavier, Kaiming weight
initialization predicting main flame intensity from the coal fired power plant dataset, average active
power for the wind turbine dataset, and E1 CHT1, E1 CHT2, E1 CHT3, E1 CHT4 for the aviation
dataset. Weight initialization and inheritance type are labeled by initial genome strategy-crossover
strategy-mutation strategy, so e.g., K-L-K would use Kaiming for the initial genomes, Lamarckian
on crossover operations, and Kaiming for components generated by mutation.
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BP Type Avg Avg Avg Worst Avg Best
Epochs Node Edge Rec Edge MSE MSE MSE

1

K-K-K 17.1 41.6 38.0 1.89e-3 1.42e-3 1.05e-3
K-L-K 29.8 118.2 55.6 1.74e-3 9.84e-4 6.60e-4
K-L-L 23.3 90.0 64.0 1.33e-3 8.40e-4 5.36e-4
K-K-L 16.7 41.0 49.8 1.32e-3 8.83e-4 5.03e-4
X-X-X 16.6 39.4 47.0 1.21e-3 7.51e-4 5.30e-4
X-L-X 23.4 92.3 65.8 1.39e-3 8.18e-4 4.87e-4
X-L-L 21.8 81.7 75.1 1.27e-3 7.85e-4 4.75e-4
X-X-L 16.4 39.6 54.9 1.40e-3 9.11e-4 5.32e-4

5

K-K-K 16.1 34.5 28.3 1.47e-3 1.07e-3 7.58e-4
K-L-K 21.9 73.2 47.6 1.21e-3 8.88e-4 6.56e-4
K-L-L 20.0 62.5 35.5 1.08e-3 8.36e-4 6.52e-4
K-K-L 15.9 31.9 22.0 1.26e-3 8.16e-4 4.75e-4
X-X-X 15.6 31.7 19.9 1.16e-3 8.21e-4 5.29e-4
X-L-X 18.4 52.0 27.6 1.41e-3 7.70e-4 5.42e-4
X-L-L 18.9 56.6 36.9 1.23e-3 7.73e-4 4.89e-4
X-X-L 16.2 33.4 26.6 1.34e-3 8.22e-4 5.11e-4

10

K-K-K 16.1 34.0 20.9 1.39e-3 9.89e-4 5.51e-4
K-L-K 22.9 71.0 33.6 1.02e-3 7.80e-4 5.45e-4
K-L-L 21.6 66.1 32.0 8.54e-4 6.90e-4 4.87e-4
K-K-L 15.7 30.1 17.7 1.39e-3 7.78e-4 4.95e-4
X-X-X 16.4 32.0 15.8 1.15e-3 8.06e-4 4.97e-4
X-L-X 18.4 51.2 23.1 9.41e-4 6.78e-4 4.96e-4
X-L-L 19.9 58.0 34.5 8.33e-4 6.90e-4 5.01e-4
X-X-L 16.0 30.3 15.5 1.08e-3 7.79e-4 5.18e-4

20

K-K-K 16.4 30.9 11.5 1.14e-3 8.62e-4 5.80e-4
K-L-K 20.9 58.0 25.0 1.02e-3 7.37e-4 5.38e-4
K-L-L 18.2 43.6 17.4 9.60e-4 6.57e-4 4.72e-4
K-K-L 15.8 28.1 10.2 1.22e-3 8.11e-4 4.95e-4
X-X-X 16.5 30.6 11.6 1.15e-3 7.27e-4 5.19e-4
X-L-X 18.3 42.3 18.8 1.01e-3 6.96e-4 5.04e-4
X-L-L 21.6 61.0 25.2 9.50e-4 6.93e-4 4.88e-4
X-X-L 16.4 30.9 9.7 9.25e-4 7.12e-4 5.06e-4

40

K-K-K 15.9 25.9 7.5 1.13e-3 8.47e-4 5.18e-4
K-L-K 19.4 46.9 15.5 8.90e-4 7.57e-4 4.77e-4
K-L-L 19.1 43.7 15.1 8.67e-4 6.55e-4 5.26e-4
K-K-L 15.8 26.2 7.6 1.04e-3 8.09e-4 5.34e-4
X-X-X 15.9 26.6 6.5 1.08e-3 8.34e-4 5.06e-4
X-L-X 18.1 37.1 12.1 9.69e-4 7.25e-4 5.37e-4
X-L-L 17.8 34.9 13.4 8.05e-4 6.72e-4 5.12e-4
X-X-L 15.6 26.2 6.5 1.07e-3 7.79e-4 5.36e-4

80

K-K-K 15.3 22.4 4.3 1.15e-3 8.71e-4 6.32e-4
K-L-K 17.8 34.8 9.1 8.48e-4 6.78e-4 4.75e-4
K-L-L 17.7 35.0 8.8 8.62e-4 6.76e-4 4.81e-4
K-K-L 15.7 23.7 3.1 1.05e-3 7.64e-4 4.93e-4
X-X-X 14.9 20.9 3.9 1.01e-3 7.93e-4 5.13e-4
X-L-X 17.0 30.8 7.0 1.08e-3 6.97e-4 4.79e-4
X-L-L 16.8 30.4 6.5 8.02e-4 6.19e-4 4.95e-4
X-X-L 15.4 23.0 5.7 1.12e-3 7.82e-4 4.88e-4

Table 1: Statistics of best genomes over 20 repeats on the coal dataset. Weight initialization and
inheritance type are labeled by initial genome strategy-crossover strategy-mutation strategy, so
e.g., K-L-K would use Kaiming for the initial genomes, Lamarckian on crossover operations, and
Kaiming for components generated by mutation.
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BP Type Avg Avg Avg Worst Avg Best
Epochs Node Edge Rec Edge MSE MSE MSE

1

K-K-K 95.0 123.0 7.2 6.76e-3 4.95e-3 4.19e-3
K-L-K 101.3 170.2 24.2 4.11e-3 3.51e-3 3.02e-3
K-L-L 95.0 151.8 33.3 3.98e-3 3.37e-3 2.98e-3
K-K-L 93.7 121.1 5.5 5.20e-3 4.55e-3 3.85e-3
X-X-X 95.1 126.9 6.6 6.50e-3 5.07e-3 4.04e-3
X-L-X 99.2 170.2 27.6 4.26e-3 3.57e-3 2.69e-3
X-L-L 94.3 154.1 33.5 3.86e-3 3.38e-3 2.86e-3
X-X-L 96.0 132.1 8.6 5.48e-3 4.50e-3 3.75e-3

5

K-K-K 94.0 121.1 9.5 3.40e-3 3.17e-3 2.88e-3
K-L-K 98.7 158.1 24.9 3.12e-3 2.87e-3 2.58e-3
K-L-L 96.2 139.8 25.5 2.94e-3 2.77e-3 2.62e-3
K-K-L 94.5 124.8 10.8 3.66e-3 3.16e-3 2.87e-3
X-X-X 94.5 126.0 11.2 3.62e-3 3.21e-3 2.78e-3
X-L-X 98.7 154.8 20.5 3.09e-3 2.90e-3 2.75e-3
X-L-L 95.3 140.3 23.4 3.12e-3 2.77e-3 2.60e-3
X-X-L 93.6 119.3 10.9 3.50e-3 3.23e-3 2.82e-3

10

K-K-K 93.7 119.4 10.2 3.18e-3 2.94e-3 2.68e-3
K-L-K 100.3 159.6 22.2 2.86e-3 2.72e-3 2.61e-3
K-L-L 96.4 140.8 22.6 2.86e-3 2.71e-3 2.49e-3
K-K-L 93.5 116.7 10.8 3.13e-3 2.91e-3 2.71e-3
X-X-X 94.0 121.2 9.4 3.26e-3 2.98e-3 2.63e-3
X-L-X 97.7 147.1 16.4 2.90e-3 2.77e-3 2.49e-3
X-L-L 95.5 132.9 22.2 2.91e-3 2.72e-3 2.51e-3
X-X-L 93.2 114.9 9.9 3.28e-3 2.92e-3 2.72e-3

20

K-K-K 93.3 115.2 7.3 3.00e-3 2.83e-3 2.69e-3
K-L-K 100.3 156.0 18.1 2.75e-3 2.65e-3 2.52e-3
K-L-L 95.9 130.8 18.9 2.74e-3 2.63e-3 2.53e-3
K-K-L 92.5 110.5 9.2 2.93e-3 2.78e-3 2.58e-3
X-X-X 93.7 117.0 7.3 2.94e-3 2.82e-3 2.68e-3
X-L-X 98.5 145.1 13.5 2.81e-3 2.68e-3 2.59e-3
X-L-L 95.6 128.2 16.9 2.71e-3 2.63e-3 2.46e-3
X-X-L 92.9 112.4 6.8 3.02e-3 2.79e-3 2.58e-3

40

K-K-K 93.3 115.0 5.2 2.84e-3 2.74e-3 2.61e-3
K-L-K 101.5 155.2 18.9 2.65e-3 2.59e-3 2.51e-3
K-L-L 94.5 118.2 13.4 2.65e-3 2.58e-3 2.46e-3
K-K-L 91.8 104.5 5.7 2.85e-3 2.73e-3 2.57e-3
X-X-X 92.8 110.8 4.8 2.87e-3 2.76e-3 2.58e-3
X-L-X 98.2 138.8 12.2 2.66e-3 2.61e-3 2.57e-3
X-L-L 95.4 124.7 14.6 2.67e-3 2.60e-3 2.51e-3
X-X-L 92.3 108.1 4.9 2.87e-3 2.74e-3 2.60e-3

80

K-K-K 91.5 101.5 4.0 2.78e-3 2.70e-3 2.58e-3
K-L-K 97.4 131.6 11.2 2.65e-3 2.59e-3 2.55e-3
K-L-L 94.2 114.8 9.3 2.62e-3 2.57e-3 2.45e-3
K-K-L 90.8 98.7 4.4 2.80e-3 2.73e-3 2.64e-3
X-X-X 92.3 106.4 3.0 2.78e-3 2.71e-3 2.60e-3
X-L-X 97.4 131.1 8.9 2.66e-3 2.59e-3 2.51e-3
X-L-L 94.0 112.7 10.2 2.66e-3 2.58e-3 2.48e-3
X-X-L 91.0 98.8 4.0 2.78e-3 2.71e-3 2.62e-3

Table 2: Statistics of best genomes over 20 repeats on the wind dataset. Weight initialization and
inheritance type are labeled by initial genome strategy-crossover strategy-mutation strategy, so
e.g., K-L-K would use Kaiming for the initial genomes, Lamarckian on crossover operations, and
Kaiming for components generated by mutation.
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BP Type Avg Avg Avg Worst Avg Best
Epochs Node Edge Rec Edge MSE MSE MSE

1

K-K-K 46.1 243.7 8.9 4.08e-2 3.60e-2 2.58e-2
K-L-K 43.0 206.5 8.9 3.20e-2 2.53e-2 1.26e-2
K-L-L 41.8 196.7 12.3 3.60e-2 2.54e-2 1.28e-2
K-K-L 42.7 205.3 6.9 4.50e-2 3.52e-2 2.73e-2
X-X-X 53.8 324.4 16.3 4.09e-2 3.54e-2 2.74e-2
X-L-X 40.2 181.8 9.2 4.10e-2 2.97e-2 1.26e-2
X-L-L 46.9 249.7 11.2 3.87e-2 3.08e-2 2.36e-2
X-X-L 53.2 319.4 16.4 4.04e-2 3.56e-2 2.79e-2

5

K-K-K 39.2 167.8 3.1 4.37e-2 3.75e-2 2.91e-2
K-L-K 41.0 185.3 10.1 3.91e-2 2.69e-2 1.87e-2
K-L-L 39.7 172.4 8.4 3.13e-2 2.28e-2 6.45e-3
K-K-L 39.1 162.8 4.2 4.32e-2 3.54e-2 2.50e-2
X-X-X 39.1 161.2 3.4 4.19e-2 3.60e-2 2.86e-2
X-L-X 39.6 172.8 10.7 3.70e-2 2.41e-2 7.35e-3
X-L-L 40.1 182.1 11.1 3.30e-2 2.36e-2 1.13e-2
X-X-L 40.5 175.2 3.6 3.90e-2 3.48e-2 2.91e-2

10

K-K-K 39.0 167.0 4.7 3.61e-2 3.11e-2 2.40e-2
K-L-K 40.7 190.3 17.1 2.80e-2 1.52e-2 6.21e-3
K-L-L 39.7 177.2 16.4 2.59e-2 1.33e-2 3.82e-3
K-K-L 38.4 157.7 3.8 3.65e-2 3.02e-2 2.12e-2
X-X-X 38.9 163.9 5.2 3.19e-2 2.74e-2 1.77e-2
X-L-X 40.0 183.2 17.9 2.05e-2 1.35e-2 5.90e-3
X-L-L 40.5 193.9 20.4 1.99e-2 1.30e-2 5.27e-3
X-X-L 38.8 161.9 3.5 3.45e-2 2.86e-2 2.05e-2

20

K-K-K 38.8 164.0 7.2 2.75e-2 1.96e-2 1.12e-2
K-L-K 40.3 184.2 14.9 1.69e-2 7.69e-3 3.69e-3
K-L-L 40.2 182.3 15.2 1.46e-2 6.53e-3 2.61e-3
K-K-L 38.5 160.7 6.0 2.77e-2 1.92e-2 9.17e-3
X-X-X 38.8 165.8 8.9 2.18e-2 1.37e-2 7.83e-3
X-L-X 40.0 180.3 16.4 8.78e-3 5.92e-3 3.95e-3
X-L-L 40.1 181.9 17.9 8.33e-3 5.46e-3 4.18e-3
X-X-L 40.0 178.7 8.6 2.49e-2 1.51e-2 7.68e-3

40

K-K-K 38.5 161.1 7.0 1.56e-2 8.87e-3 4.15e-3
K-L-K 39.3 171.6 10.7 6.31e-3 4.66e-3 2.92e-3
K-L-L 39.4 171.3 11.5 6.93e-3 4.68e-3 3.22e-3
K-K-L 38.2 158.2 7.0 1.68e-2 8.69e-3 4.23e-3
X-X-X 39.1 167.6 7.8 7.15e-3 6.13e-3 4.47e-3
X-L-X 40.0 178.7 11.4 5.86e-3 4.21e-3 2.97e-3
X-L-L 40.0 179.5 9.1 5.81e-3 4.17e-3 3.40e-3
X-X-L 39.0 168.3 7.9 6.83e-3 5.24e-3 3.92e-3

80

K-K-K 37.1 146.2 4.8 5.12e-3 4.18e-3 3.28e-3
K-L-K 38.4 159.5 6.5 5.94e-3 4.17e-3 3.00e-3
K-L-L 37.7 152.2 6.7 5.09e-3 4.22e-3 2.87e-3
K-K-L 36.9 142.7 4.7 9.40e-3 5.63e-3 3.50e-3
X-X-X 36.9 144.2 4.5 6.08e-3 4.91e-3 4.05e-3
X-L-X 38.0 155.5 6.5 4.33e-3 3.68e-3 2.45e-3
X-L-L 38.9 164.4 5.8 5.38e-3 3.83e-3 3.03e-3
X-X-L 37.8 152.6 5.0 5.32e-3 4.44e-3 3.76e-3

Table 3: Statistics of best genomes over 20 repeats on the c172 dataset. Weight initialization and
inheritance type are labeled by initial genome strategy-crossover strategy-mutation strategy, so
e.g., K-L-K would use Kaiming for the initial genomes, Lamarckian on crossover operations, and
Kaiming for components generated by mutation.



10 Z. Lyu et al.

memory cells uniformly at random. Recurrent connections could span any time-
skip generated randomly between U(1, 10). Backpropagation (BP) through time
was run with a learning rate of η = 0.001 and used Nesterov momentum with
µ = 0.9. For the memory cells with forget gates, the forget gate bias had a value
of 1.0 added to it (motivated by [14]). To prevent exploding gradients, gradient
scaling [21] was used when the norm of the gradient exceeded a threshold of
1.0. To combat vanishing gradients, gradient boosting (the opposite of scaling)
was used when the gradient norm was below 0.05. These parameters have been
selected by hand-tuning during the prior experience.

Effect of Weight Inheritance on RNN Training Time: Our hypotheses were that
i), utilizing Lamarckian weight inheritance would provide performance improve-
ments over Xavier and Kaiming initialization, and ii), it could potentially al-
low for networks to be effectively evolved using fewer BP epochs per genome.
To provide a comprehensive exploration, we set up experiments where the ini-
tial genomes initialized weights with the Xavier and Kaiming strategies (as the
Lamarckian strategies could not yet be used). In these experiments, we tested
the combinations of the two Lamarckian strategies with the initial weight in-
heritance strategy. Note that when Lamarckian weight inheritance is used for
crossover and Xavier for weight inheritance, this is identical to the Lamarckain
strategy used by [23], so their strategy was also investigated.

BP epochs of 1, 5, 10, 20, 40 and 80 per genome generated were examined. To
have a fair comparison between the test cases, the total number of BP epochs for
each search was held fixed at 200k for each test. This resulted in the total number
of genomes generated during evolution for the tests being 200k, 40k, 20k, 10k,
5k and 2.5k respectively. In total, for each initial weight strategy (Kaiming and
Xavier) there were 72 different experiments done with different BP epochs and
strategies for crossover and mutation weight initialization for the coal fired power
plant, wind turbine, and aviation datasets. All the experiments were repeated
20 times, allowing the Mann–Whitney U-test for statistical significance.

Figure 1 presents box plots of the best genome fitness from 20 repeats of
each of the experiments using Xavier and Kaiming weight initialization and their
combinations with the Lamarckian strategies. These results are summarized in
Tables 1, 2 and 3, which present the best, average, and worst global best genome
mean average error (MAE) at the end of the 20 repeated tests for each experiment
performed on coal, wind, and aviation datasets. The best performing experiments
are highlighted in bold and italics for each number of BP epochs, and the overall
best experiment is highlighted in bold.

In the average case, for all three datasets, all but one best performing genomes
were found using Lamarckian weight inheritance on crossover, and further all
but one of the best cases utilized Lamarckian weight inheritance for crossover.
Only one case used Xavier for weight initialization, inheritance for crossover and
mutation in coal dataset that achieved the average best when the BP epochs
was 1. All other best and average cases used Lamarckian weight initialize for
crossover, mutation or both. Generally, the more epochs used in BP training in
EXAMM, the better the validation MSE. In all of the three datasets the average
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Cessna 172 - Kaiming

BP
Epochs Type K-K-K K-L-K K-L-L K-K-L

1

K-K-K / 0.0000 0.0000 0.1427
K-L-K 0.0000 / 0.4302 0.0000
K-L-L 0.0000 0.4302 / 0.0000
K-K-L 0.1427 0.0000 0.0000 /

5

K-K-K / 0.0000 0.0000 0.0702
K-L-K 0.0000 / 0.0283 0.0000
K-L-L 0.0000 0.0283 / 0.0000
K-K-L 0.0702 0.0000 0.0000 /

10

K-K-K / 0.0000 0.0000 0.1897
K-L-K 0.0000 / 0.2285 0.0000
K-L-L 0.0000 0.2285 / 0.0000
K-K-L 0.1897 0.0000 0.0000 /

20

K-K-K / 0.0000 0.0000 0.3676
K-L-K 0.0000 / 0.1042 0.0000
K-L-L 0.0000 0.1042 / 0.0000
K-K-L 0.3676 0.0000 0.0000 /

40

K-K-K / 0.0000 0.0000 0.3474
K-L-K 0.0000 / 0.4516 0.0000
K-L-L 0.0000 0.4516 / 0.0000
K-K-L 0.3474 0.0000 0.0000 /

80

K-K-K / 0.4946 0.4946 0.0001
K-L-K 0.4946 / 0.2714 0.0000
K-L-L 0.4946 0.2714 / 0.0000
K-K-L 0.0001 0.0000 0.0000 /

Cessna 172 - Xavier

BP
Epochs Type X-X-X X-L-X X-L-L X-X-L

1

X-X-X / 0.0010 0.0008 0.4516
X-L-X 0.0010 / 0.4409 0.0006
X-L-L 0.0008 0.4409 / 0.0006
X-X-L 0.4516 0.0006 0.0006 /

5

X-X-X / 0.0000 0.0000 0.1824
X-L-X 0.0000 / 0.2452 0.0000
X-L-L 0.0000 0.2452 / 0.0000
X-X-L 0.1824 0.0000 0.0000 /

10

X-X-X / 0.0000 0.0000 0.1971
X-L-X 0.0000 / 0.3375 0.0000
X-L-L 0.0000 0.3375 / 0.0000
X-X-L 0.1971 0.0000 0.0000 /

20

X-X-X / 0.0000 0.0000 0.1552
X-L-X 0.0000 / 0.0739 0.0000
X-L-L 0.0000 0.0739 / 0.0000
X-X-L 0.1552 0.0000 0.0000 /

40

X-X-X / 0.0000 0.0000 0.0015
X-L-X 0.0000 / 0.3474 0.0024
X-L-L 0.0000 0.3474 / 0.0002
X-X-L 0.0015 0.0024 0.0002 /

80

X-X-X / 0.0000 0.0000 0.0090
X-L-X 0.0000 / 0.3676 0.0000
X-L-L 0.0000 0.3676 / 0.0006
X-X-L 0.0090 0.0000 0.0006 /

Coal - Kaiming

BP
Epochs Type K-K-K K-L-K K-L-L K-K-L

1

K-K-K / 0.0000 0.0000 0.0000
K-L-K 0.0000 / 0.0360 0.1366
K-L-L 0.0000 0.0360 / 0.3575
K-K-L 0.0000 0.1366 0.3575 /

5

K-K-K / 0.0036 0.0000 0.0429
K-L-K 0.0036 / 0.0057 0.1308
K-L-L 0.0000 0.0057 / 0.0010
K-K-L 0.0429 0.1308 0.0010 /

10

K-K-K / 0.0024 0.0001 0.0033
K-L-K 0.0024 / 0.0120 0.3779
K-L-L 0.0001 0.0120 / 0.1427
K-K-L 0.0033 0.3779 0.1427 /

20

K-K-K / 0.0137 0.0006 0.1552
K-L-K 0.0137 / 0.0234 0.1427
K-L-L 0.0006 0.0234 / 0.0077
K-K-L 0.1552 0.1427 0.0077 /

40

K-K-K / 0.0072 0.0001 0.2047
K-L-K 0.0072 / 0.0004 0.0994
K-L-L 0.0001 0.0004 / 0.0005
K-K-L 0.2047 0.0994 0.0005 /

80

K-K-K / 0.0003 0.0001 0.0360
K-L-K 0.0003 / 0.4302 0.1366
K-L-L 0.0001 0.4302 / 0.0903
K-K-L 0.0360 0.1366 0.0903 /

Coal - Xavier

BP
Epochs Type X-X-X X-L-X X-L-L X-X-L

1

X-X-X / 0.1754 0.3779 0.0158
X-L-X 0.1754 / 0.2896 0.0666
X-L-L 0.3779 0.2896 / 0.0481
X-X-L 0.0158 0.0666 0.0481 /

5

X-X-X / 0.1617 0.1824 0.3474
X-L-X 0.1617 / 0.4409 0.2538
X-L-L 0.1824 0.4409 / 0.2896
X-X-L 0.3474 0.2538 0.2896 /

10

X-X-X / 0.0077 0.0077 0.3474
X-L-X 0.0077 / 0.2367 0.0249
X-L-L 0.0077 0.2367 / 0.0158
X-X-L 0.3474 0.0249 0.0158 /

20

X-X-X / 0.2625 0.3375 0.4730
X-L-X 0.2625 / 0.4409 0.2896
X-L-L 0.3375 0.4409 / 0.3575
X-X-L 0.4730 0.2896 0.3575 /

40

X-X-X / 0.0053 0.0002 0.1552
X-L-X 0.0053 / 0.0455 0.1617
X-L-L 0.0002 0.0455 / 0.0266
X-X-L 0.1552 0.1617 0.0266 /

80

X-X-X / 0.0283 0.0004 0.3277
X-L-X 0.0283 / 0.0283 0.0266
X-L-L 0.0004 0.0283 / 0.0002
X-X-L 0.3277 0.0266 0.0002 /

Wind - Kaiming

BP
Epochs Type K-K-K K-L-K K-L-L K-K-L

1

K-K-K / 0.0000 0.0000 0.0158
K-L-K 0.0000 / 0.0509 0.0000
K-L-L 0.0000 0.0509 / 0.0000
K-K-L 0.0158 0.0000 0.0000 /

5

K-K-K / 0.0000 0.0000 0.2538
K-L-K 0.0000 / 0.0072 0.0000
K-L-L 0.0000 0.0072 / 0.0000
K-K-L 0.2538 0.0000 0.0000 /

10

K-K-K / 0.0000 0.0000 0.2896
K-L-K 0.0000 / 0.4623 0.0000
K-L-L 0.0000 0.4623 / 0.0000
K-K-L 0.2896 0.0000 0.0000 /

20

K-K-K / 0.0000 0.0000 0.0739
K-L-K 0.0000 / 0.0429 0.0005
K-L-L 0.0000 0.0429 / 0.0001
K-K-L 0.0739 0.0005 0.0001 /

40

K-K-K / 0.0000 0.0000 0.3882
K-L-K 0.0000 / 0.4946 0.0000
K-L-L 0.0000 0.4946 / 0.0000
K-K-L 0.3882 0.0000 0.0000 /

80

K-K-K / 0.0000 0.0000 0.1824
K-L-K 0.0000 / 0.2285 0.0000
K-L-L 0.0000 0.2285 / 0.0000
K-K-L 0.1824 0.0000 0.0000 /

Wind - Xavier

BP
Epochs Type X-X-X X-L-X X-L-L X-X-L

1

X-X-X / 0.0000 0.0000 0.0024
X-L-X 0.0000 / 0.0266 0.0000
X-L-L 0.0000 0.0266 / 0.0000
X-X-L 0.0024 0.0000 0.0000 /

5

X-X-X / 0.0000 0.0000 0.3575
X-L-X 0.0000 / 0.0008 0.0000
X-L-L 0.0000 0.0008 / 0.0000
X-X-L 0.3575 0.0000 0.0000 /

10

X-X-X / 0.0000 0.0000 0.0405
X-L-X 0.0000 / 0.0818 0.0008
X-L-L 0.0000 0.0818 / 0.0001
X-X-L 0.0405 0.0008 0.0001 /

20

X-X-X / 0.0000 0.0000 0.1197
X-L-X 0.0000 / 0.0133 0.0057
X-L-L 0.0000 0.0133 / 0.0001
X-X-L 0.1197 0.0057 0.0001 /

40

X-X-X / 0.0000 0.0000 0.3084
X-L-X 0.0000 / 0.2452 0.0000
X-L-L 0.0000 0.2452 / 0.0000
X-X-L 0.3084 0.0000 0.0000 /

80

X-X-X / 0.0000 0.0000 0.2124
X-L-X 0.0000 / 0.1366 0.0000
X-L-L 0.0000 0.1366 / 0.0000
X-X-L 0.2124 0.0000 0.0000 /

Table 4: Mann–Whitney U test p-values comparing Kaiming and Xavier weight initialization and
inheritance strategies for the three datasets. p-values in bold indicate a statistically significant dif-
ference with α = 0.05. Weight initialization and inheritance type are labeled by initial genome
strategy-crossover strategy-mutation strategy, so e.g., K-L-K would use Kaiming for the initial
genomes, Lamarckian on crossover operations, and Kaiming for components generated by mutation.
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global best results come from BP epoch 80. The global best genome in coal
dataset is found when using 20 BP epochs, whereas the global best genomes in
the other two datasets are all found using 80 epochs.

Further strengthening these results on the benefit of the Lamarckian strategy,
Table 4 presents Mann-Whitney U tests of statistical significance comparing the
varying weight initialization tests against each other for each number of BP
epochs. For the wind turbine data, we see very strong statistical significance in
most cases, highlighting that the improvements from the Lamarckian strategy.
While the statistical significance is less strong in some cases on the coal dataset,
interestingly the statistical significance increases with the number of BP epochs
utilized perhaps due to the fact more training time enables quicker convergence
to local or global minima.

For the coal and wind turbine dataset, increasing the number of BP epochs
does not significantly improve the validation MSE. It means utilizing Lamarck-
ian weight inheritance provides the ability to reduce the number of BP epochs
required for training, which in turn allows for more time to be spent evolving the
RNN architectures. However, the C172 dataset results generally improve when
using more BP epochs, perhaps due to the added complexity of having multiple
output parameters.

Effect of Evolution on Genome’s Weight Performance: Further tests were done
to see if Lamarckian weight inheritance and the neuroevolutionary process pro-
vided any other benefits over training RNNs for long periods of time. The best
RNN architectures from each of the 20 repeats from all the experiments were
retrained with their weights reinitialized with both the Kaiming and Xavier
methods. Those architectures were then retrained for a long time (3000 epochs),
and the best and average validation MSE of the retrained results were compared
with the best and average validation MSE results.

Table 5 shows the best and average EXAMM validation results compared to
the best and average retrained results for all the experiment types across all three
datasets. In the best case, for the coal and wind dataset, almost all of the results
at the end of EXAMM outperform the retrained RNNs, and in the cases where it
does not the results are quite close. The C172 data proved more challenging here
and outperformed the final EXAMM results, which may indicate that it would
benefit from even longer training epochs when generating genomes. Additionally,
when the BP epochs were 40, EXAMM performed the best on both the coal
and wind dataset, which shows that utilizing Lamarckian strategies can provide
strong results using fewer epochs, and also that the neuroevolutionary process
is providing additional benefits, as even when these networks are retrained for
a very long period of time, they still perform worse than the ones with evolved
weights.

In the average case, EXAMM strongly outperforms the retrained networks
for all the datasets in all but one case. This shows that EXAMM’s Lamarckian
weight inheritance method typically evolves genomes that do not require further
training, as opposed to other neural architecture search strategies which first
find the architecture and then need to train it for a significant period of time.
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5 Conclusions

This work is an experimental study on the effects of weight initialization and
weight inheritance in neuroevolution. It compares the well known Kaiming and
Xavier weight initialization strategies to two Lamarckian weight inheritance
strategies, once based on recombining parental weights during crossover, and
another using statistical information of parental weights to assign new weights
in mutation operations. This is done in the context of the Evolutionary eX-
ploration of Augmenting Memory Models (EXAMM) neuroevolution algorithm,
which progressively evolves and trains RNNs for time series data prediction us-
ing a direct encoding strategy. Experiments were done using three large scale
real world time series data sets, one generated from a coal fired power plant, one
from a wind turbine, and one from aviation flight.

A comprehensive suite of tests was run, finding with statistical significance
that the Lamarckian strategies outperform Xavier and Kaiming weight initial-
ization for generating new RNNs through EXAMM. Further, these Lamarckian
strategies are also shown to be able to reduce the number of backpropagation
epochs required to train the generated neural networks, allowing the neuroevolu-
tion algorithm to be able to perform more architectural evolution. These results
validate a commonly held view that Lamarckian weight inheritance strategies can
improve the performance of neuroevolution algorithms [23, 7, 19], which to the
authors knowledge has not been rigorously compared to state-of-the-art Xavier
and Kaiming weight initialization.

Further, the weights found during the neuroevolution process with Lamarck-
ian weight inheritance were found to provide better results than when the best
found evolved architectures were retrained from random Xavier or Kaiming ini-
tializations for a large number of epochs. This highlights that the Lamarckian
evolutionary process is providing additional benefit to the selection of weights
and how the weight search space is traversed, showing that in most cases, the net-
works and weights generated by EXAMM and Lamarckian weight inheritance
do not require further training, unlike many other neural architecture search
strategies which first find an architecture and then need to continue to train it
for a longer period of time.

The Lamarckian strategies presented are generic and can be applied to any
direct encoding neuroevolution algorithm. Future work will expand these results
to convolutional neural networks as well as recurrent neural networks used for
natural language processing tasks (which tend to have wider but shallower ar-
chitectures). Furthermore, this weight initialization and inheritance strategy can
also be applied to and tested on other NE algorithms. Given these results as moti-
vation, investigating new Lamarckian strategies to further enhance performance
will also be done.
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